0%

Java-38-网络编程基础

软件结构

  • C/S结构 :全称为Client/Server结构,是指客户端和服务器结构。常见程序有QQ、红蜘蛛、飞秋等软件。

1_cs

B/S结构 :全称为Browser/Server结构,是指浏览器和服务器结构。常见浏览器有IE、谷歌、火狐等。

2_bs

两种架构各有优势,但是无论哪种架构,都离不开网络的支持。网络编程,就是在一定的协议下,实现两台计算机的通信的程序。

网络编程三要素

IP地址和域名

IP地址

IP地址:指互联网协议地址(Internet Protocol Address),俗称IP。IP地址用来给一个网络中的计算机设备做唯一的编号。假如我们把“个人电脑”比作“一台电话”的话,那么“IP地址”就相当于“电话号码”。

IP地址分类方式一:

  • IPv4:是一个32位的二进制数,通常被分为4个字节,表示成a.b.c.d 的形式,例如192.168.65.100 。其中a、b、c、d都是0~255之间的十进制整数,那么最多可以表示42亿个。

  • IPv6:由于互联网的蓬勃发展,IP地址的需求量愈来愈大,但是网络地址资源有限,使得IP的分配越发紧张。

    为了扩大地址空间,拟通过IPv6重新定义地址空间,采用128位地址长度,每16个字节一组,分成8组十六进制数,表示成ABCD:EF01:2345:6789:ABCD:EF01:2345:6789,号称可以为全世界的每一粒沙子编上一个网址,这样就解决了网络地址资源数量不够的问题。IPv4和IPv6地址格式不相同,因此在很长一段时间里,互联网中出现IPv4和IPv6长期共存的局面。2012年6月6日,国际互联网协会举行了世界IPv6启动纪念日,这一天,全球IPv6网络正式启动。多家知名网站,如Google、Facebook和Yahoo等,于当天全球标准时间0点(北京时间8点整)开始永久性支持IPv6访问。2018年6月,三大运营商联合阿里云宣布,将全面对外提供IPv6服务,并计划在2025年前助推中国互联网真正实现“IPv6 Only”。 7月,百度云制定了中国的IPv6改造方案。8月3日,工信部通信司在北京召开IPv6规模部署及专项督查工作全国电视电话会议,中国将分阶段有序推进规模建设IPv6网络,实现下一代互联网在经济社会各领域深度融合。

IP地址分类方式二:

公网地址( 万维网使用)和 私有地址( 局域网使用)。192.168.开头的就是私有址址,范围即为192.168.0.0—192.168.255.255,专门为组织机构内部使用

常用命令:

  • 查看本机IP地址,在控制台输入:
1
ipconfig
  • 检查网络是否连通,在控制台输入:
1
2
ping 空格 IP地址
ping 220.181.57.216

特殊的IP地址:

  • 本地回环地址(hostAddress):127.0.0.1
  • 主机名(hostName):localhost

域名

因为IP地址数字不便于记忆,因此出现了域名,域名容易记忆,当在连接网络时输入一个主机的域名后,域名服务器(DNS)负责将域名转化成IP地址,这样才能和主机建立连接。 ———- 域名解析

image-20220131125934581

  1. 在浏览器中输入www . qq .com 域名,操作系统会先检查自己本地的hosts文件是否有这个网址映射关系,如果有,就先调用这个IP地址映射,完成域名解析。
  2. 如果hosts里没有这个域名的映射,则查找本地DNS解析器缓存,是否有这个网址映射关系,如果有,直接返回,完成域名解析。
  3. 如果hosts与本地DNS解析器缓存都没有相应的网址映射关系,首先会找TCP/ip参数中设置的首选DNS服务器,在此我们叫它本地DNS服务器,此服务器收到查询时,如果要查询的域名,包含在本地配置区域资源中,则返回解析结果给客户机,完成域名解析,此解析具有权威性。
  4. 如果要查询的域名,不由本地DNS服务器区域解析,但该服务器已缓存了此网址映射关系,则调用这个IP地址映射,完成域名解析,此解析不具有权威性。
  5. 如果本地DNS服务器本地区域文件与缓存解析都失效,则根据本地DNS服务器的设置(是否设置转发器)进行查询,如果未用转发模式,本地DNS就把请求发至13台根DNS,根DNS服务器收到请求后会判断这个域名(.com)是谁来授权管理,并会返回一个负责该顶级域名服务器的一个IP。本地DNS服务器收到IP信息后,将会联系负责.com域的这台服务器。这台负责.com域的服务器收到请求后,如果自己无法解析,它就会找一个管理.com域的下一级DNS服务器地址(http://qq.com)给本地DNS服务器。当本地DNS服务器收到这个地址后,就会找(http://qq.com)域服务器,重复上面的动作,进行查询,直至找到www . qq .com主机。
  6. 如果用的是转发模式,此DNS服务器就会把请求转发至上一级DNS服务器,由上一级服务器进行解析,上一级服务器如果不能解析,或找根DNS或把转请求转至上上级,以此循环。不管是本地DNS服务器用是是转发,还是根提示,最后都是把结果返回给本地DNS服务器,由此DNS服务器再返回给客户机。

端口号

网络的通信,本质上是两个进程(应用程序)的通信。每台计算机都有很多的进程,那么在网络通信时,如何区分这些进程呢?

如果说IP地址可以唯一标识网络中的设备,那么端口号就可以唯一标识设备中的进程(应用程序)了。

  • 端口号:用两个字节表示的整数,它的取值范围是0~65535
    • 公认端口:0~1023。被预先定义的服务通信占用,如:HTTP(80),FTP(21),Telnet(23)
    • 注册端口:1024~49151。分配给用户进程或应用程序。如:Tomcat(8080),MySQL(3306),Oracle(1521)。
    • 动态/ 私有端口:49152~65535。

如果端口号被另外一个服务或应用所占用,会导致当前程序启动失败。

网络通信协议

  • 网络通信协议:通过计算机网络可以使多台计算机实现连接,位于同一个网络中的计算机在进行连接和通信时需要遵守一定的规则,这就好比在道路中行驶的汽车一定要遵守交通规则一样。在计算机网络中,这些连接和通信的规则被称为网络通信协议,它对数据的传输格式、传输速率、传输步骤等做了统一规定,通信双方必须同时遵守才能完成数据交换。

  • TCP/IP协议: 传输控制协议/因特网互联协议( Transmission Control Protocol/Internet Protocol),是Internet最基本、最广泛的协议。它定义了计算机如何连入因特网,以及数据如何在它们之间传输的标准。它的内部包含一系列的用于处理数据通信的协议,并采用了4层的分层模型,每一层都呼叫它的下一层所提供的协议来完成自己的需求。

1564019044385

上图中,OSI参考模型:模型过于理想化,未能在因特网上进行广泛推广。 TCP/IP参考模型(或TCP/IP协议):事实上的国际标准。

  • TCP/IP协议中的四层分别是应用层、传输层、网络层和链路层,每层分别负责不同的通信功能。
    链路层:链路层是用于定义物理传输通道,通常是对某些网络连接设备的驱动协议,例如针对光纤、网线提供的驱动。
  • 网络层:网络层是整个TCP/IP协议的核心,它主要用于将传输的数据进行分组,将分组数据发送到目标计算机或者网络。而IP协议是一种非常重要的协议。IP(internet protocal)又称为互联网协议。IP的责任就是把数据从源传送到目的地。它在源地址和目的地址之间传送一种称之为数据包的东西,它还提供对数据大小的重新组装功能,以适应不同网络对包大小的要求。
  • 传输层:主要使网络程序进行通信,在进行网络通信时,可以采用TCP协议,也可以采用UDP协议。TCP(Transmission Control Protocol)协议,即传输控制协议,是一种面向连接的、可靠的、基于字节流的传输层通信协议。UDP(User Datagram Protocol,用户数据报协议):是一个无连接的传输层协议、提供面向事务的简单不可靠的信息传送服务。
  • 应用层:主要负责应用程序的协议,例如HTTP协议、FTP协议、SNMP(简单网络管理协议)、SMTP(简单邮件传输协议)和POP3(Post Office Protocol 3的简称,即邮局协议的第3个版)等。

而通常我们说的TCP/IP协议,其实是指TCP/IP协议族,因为该协议家族的两个最核心协议:TCP(传输控制协议)和IP(网际协议),为该家族中最早通过的标准,所以简称为TCP/IP协议。

TCP与UDP协议

通信的协议还是比较复杂的,java.net 包中包含的类和接口,它们提供低层次的通信细节。我们可以直接使用这些类和接口,来专注于网络程序开发,而不用考虑通信的细节。

java.net 包中提供了两种常见的网络协议的支持:

  • UDP:用户数据报协议(User Datagram Protocol)。
  • TCP:传输控制协议 (Transmission Control Protocol)。

UDP协议

UDP:用户数据报协议(User Datagram Protocol),它是非面向连的,不可靠的无连接通信协议,即在数据传输时,数据的发送端和接收端不建立逻辑连接。简单来说,当一台计算机向另外一台计算机发送数据时,发送端不会确认接收端是否存在,就会发出数据,同样接收端在收到数据时,也不会向发送端反馈是否收到数据。

由于使用UDP协议消耗资源小,通信效率高,所以通常都会用于音频、视频和普通数据的传输例如视频会议都使用UDP协议,因为这种情况即使偶尔丢失一两个数据包,也不会对接收结果产生太大影响。

但是在使用UDP协议传送数据时,由于UDP的面向无连接性,不能保证数据的完整性,因此在传输重要数据时不建议使用UDP协议。

  • 大小限制的:数据被限制在64kb以内,超出这个范围就不能发送了。

  • 数据报(Datagram):网络传输的基本单位

TCP协议

TCP:传输控制协议 (Transmission Control Protocol)。它是面向连接的,可靠的通信协议,即传输数据之前,在发送端和接收端建立逻辑连接,然后再传输数据,它提供了两台计算机之间可靠无差错的数据传输。是一种面向连接的、可靠的、基于字节流的传输层的通信协议,可以连续传输大量的数据。类似于打电话的效果。

这是因为它为当一台计算机需要与另一台远程计算机连接时,TCP协议会采用“三次握手”方式让它们建立一个连接,用于发送和接收数据的虚拟链路。数据传输完毕TCP协议会采用“四次挥手”方式断开连接。

TCP协议负责收集这些数据信息包,并将其按适当的次序放好传送,在接收端收到后再将其正确的还原。TCP协议保证了数据包在传送中准确无误。TCP协议使用重发机制,当一个通信实体发送一个消息给另一个通信实体后,需要收到另一个通信实体确认信息,如果没有收到另一个通信实体确认信息,则会再次重复刚才发送的消息。

三次握手

TCP协议中,在发送数据的准备阶段,客户端与服务器之间的三次交互,以保证连接的可靠。

  • 第一次握手,客户端向服务器端发出连接请求,等待服务器确认。

  • 第二次握手,服务器端向客户端回送一个响应,通知客户端收到了连接请求。

  • 第三次握手,客户端再次向服务器端发送确认信息,确认连接。

1564020243342

完成三次握手,连接建立后,客户端和服务器就可以开始进行数据传输了。由于这种面向连接的特性,TCP协议可以保证传输数据的安全,所以应用十分广泛,例如下载文件、浏览网页等。

四次挥手

TCP协议中,在发送数据结束后,释放连接时需要经过四次挥手。

  • 第一次挥手:客户端向服务器端提出结束连接,让服务器做最后的准备工作。此时,客户端处于半关闭状态,即表示不再向服务器发送数据了,但是还可以接受数据。
  • 第二次挥手:服务器接收到客户端释放连接的请求后,会将最后的数据发给客户端。并告知上层的应用进程不再接收数据。
  • 第三次挥手:服务器发送完数据后,会给客户端发送一个释放连接的报文。那么客户端接收后就知道可以正式释放连接了。
  • 第四次挥手:客户端接收到服务器最后的释放连接报文后,要回复一个彻底断开的报文。这样服务器收到后才会彻底释放连接。这里客户端,发送完最后的报文后,会等待2MSL,因为有可能服务器没有收到最后的报文,那么服务器迟迟没收到,就会再次给客户端发送释放连接的报文,此时客户端在等待时间范围内接收到,会重新发送最后的报文,并重新计时。如果等待2MSL后,没有收到,那么彻底断开。

1564021582928

网络编程API

通信的两端都要有Socket(也可以叫“套接字”),是两台机器间通信的端点。网络通信其实就是Socket间的通信。Socket可以分为:

  • 流套接字(stream socket):使用TCP提供可依赖的字节流服务
    • ServerSocket:此类实现TCP服务器套接字。服务器套接字等待请求通过网络传入。
    • Socket:此类实现客户端套接字(也可以就叫“套接字”)。套接字是两台机器间通信的端点。
  • 数据报套接字(datagram socket):使用UDP提供“尽力而为”的数据报服务
    • DatagramSocket:此类表示用来发送和接收UDP数据报包的套接字。

TCP网络编程

通信模型

Java语言的基于套接字TCP编程分为服务端编程和客户端编程,其通信模型如图所示:

1564025942044

开发步骤

服务器端程序包含以下四个基本的 步骤:

  • 调用 ServerSocket(int port) :创建一个服务器端套接字,并绑定到指定端口上。用于监听客户端的请求。
  • 调用 accept() :监听连接请求,如果客户端请求连接,则接受连接,返回通信套接字对象。
  • 调用 该Socket 类对象的 getOutputStream() 和 getInputStream () :获取输出流和输入流,开始网络数据的发送和接收。
  • 关闭Socket 对象:客户端访问结束,关闭通信套接字。

客户端程序包含以下四个基本的步骤 :

  • 创建 Socket :根据指定服务端的 IP 地址或端口号构造 Socket 类对象。若服务器端响应,则建立客户端到服务器的通信线路。若连接失败,会出现异常。
  • 打开连接到 Socket 的输入/ 出流: 使用 getInputStream()方法获得输入流,使用getOutputStream()方法获得输出流,进行数据传输
  • 按照一定的协议对 Socket 进行读/ 写操作:通过输入流读取服务器放入线路的信息(但不能读取自己放入线路的信息),通过输出流将信息写入线路。
  • 关闭 Socket :断开客户端到服务器的连接,释放线路

演示单个客户端与服务器单次通信

服务器端示例代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
package com.tipdm.demo4;

import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
import java.sql.SQLOutput;

// 服务器端
public class TestServer {
public static void main(String[] args) {
try {
ServerSocket ss = new ServerSocket(7878);
Socket socket = ss.accept(); // 监听
BufferedReader br = new BufferedReader(new InputStreamReader(socket.getInputStream()));
String word = br.readLine();
System.out.println("这个是客户端的请求信息:"+ word);
socket.shutdownInput();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));
bw.write("你好客户端,我是服务器,我收到了你的消息。");
bw.flush();
bw.close();
socket.close();
}catch (Exception ex){
ex.printStackTrace();
}
}
}

客户端示例代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
package com.tipdm.demo4;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.Socket;

// 客户端
public class TestClient {
public static void main(String[] args) {
try {
Socket socket = new Socket("localhost", 7878);
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));
bw.write("你好是服务器,我是客户端,我向你发送了一条请求。");
bw.flush();
socket.shutdownOutput();
BufferedReader br = new BufferedReader(new InputStreamReader(socket.getInputStream()));
String answer = br.readLine();
System.out.println("这里是客户端,服务器的相应信息是:"+answer);
br.close();
socket.close();
}catch (Exception e){
e.printStackTrace();
}
}
}

运行效果:

  • 首先开启服务器,开启后服务器进入监听状态。

image-20230621222859582

  • 接下来运行客户端,向服务器发送数据。

image-20230621222923545

  • 客户端运行完后回到服务器,查看服务器输出结果。

image-20230621222949603

演示多个客户端与服务器之间的多次通信

要想达到多次通信的效果,就需要使用到多线程,让主线程负责监听请求,监听到请求后创建一个子线程为监听到的客户端服务。为了能够为所有的客户端服务,在这里监听时,就需要写入死循环,让其多次监听。
多线程处理服务器子线程类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
package com.tipdm.demo5;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.Socket;

public class ServerThread extends Thread{
private Socket socket;

public ServerThread(Socket socket) {
this.socket = socket;
}

@Override
public void run() {
try {
BufferedReader br = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
String word = br.readLine();
System.out.println("这个是客户端的请求信息:" + word);
this.socket.shutdownInput();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(this.socket.getOutputStream()));
bw.write("你好客户端,我是服务器,我收到了你的消息。");
bw.flush();
bw.close();
this.socket.close();
}catch (Exception e){
e.printStackTrace();
}
}
}

服务器端:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
package com.tipdm.demo5;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.ServerSocket;
import java.net.Socket;

// 服务器端,双向多次运行
public class TestServer {
public static void main(String[] args) {
try {
ServerSocket ss = new ServerSocket(7878);
while (true){
Socket socket = ss.accept(); // 监听
ServerThread st = new ServerThread(socket);
st.start();
}
}catch (Exception ex){
ex.printStackTrace();
}
}
}

客户端:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
package com.tipdm.demo5;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.net.Socket;

// 客户端
public class TestClient {
public static void main(String[] args) {
try {
Socket socket = new Socket("localhost", 7878);
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(socket.getOutputStream()));
bw.write("你好是服务器,我是客户端,我向你发送了一条请求。");
bw.flush();
socket.shutdownOutput();
BufferedReader br = new BufferedReader(new InputStreamReader(socket.getInputStream()));
String answer = br.readLine();
System.out.println("这里是客户端,服务器的相应信息是:"+answer);
br.close();
socket.close();
}catch (Exception e){
e.printStackTrace();
}
}
}

运行效果:

  • 运行服务器端,主线程开始监听

image-20230621223341652

  • 运行客户端,开始向服务器请求数据。

image-20230621223406394

  • 服务器接收到客户端请求后,处理请求,并继续监听下一次请求

image-20230621223436175

  • 在此运行客户端,再次发送请求。

image-20230621223503011

  • 回到服务器端,查看这次请求的处理结果。

image-20230621223527736

演示多个客户端与服务器之间通信(传输对象)

对象中包含的信息会比普通的字符串数据要多得多,所有能够完成对象信息的传输,对于我们处理更复杂的任务而言是非常有帮助的。

为了传输对象,首先自定义一个对象,Student。注意:想要序列化这个对象,必须让其实现Serializable接口。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
package com.tipdm.demo6;


import java.io.Serializable;

public class Student implements Serializable {
private String stuName;
private int stuAge;

public Student() {
}

public Student(String stuName, int stuAge) {
this.stuName = stuName;
this.stuAge = stuAge;
}

@Override
public String toString() {
return "Student{" +
"stuName='" + stuName + '\'' +
", stuAge=" + stuAge +
'}';
}

public String getStuName() {
return stuName;
}

public void setStuName(String stuName) {
this.stuName = stuName;
}

public int getStuAge() {
return stuAge;
}

public void setStuAge(int stuAge) {
this.stuAge = stuAge;
}
}

服务器子线程类。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
package com.tipdm.demo6;

import java.io.*;
import java.net.Socket;

public class ServerThread extends Thread{
private Socket socket;

public ServerThread(Socket socket) {
this.socket = socket;
}

@Override
public void run() {
try {
ObjectInputStream oi = new ObjectInputStream(this.socket.getInputStream());
Student object = (Student) oi.readObject();
System.out.println("这个是客户端的请求信息:" + object);
this.socket.shutdownInput();
BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(this.socket.getOutputStream()));
bw.write("你好客户端,我是服务器,我收到了你的消息。");
bw.flush();
bw.close();
this.socket.close();
}catch (Exception e){
e.printStackTrace();
}
}
}

服务器类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
package com.tipdm.demo6;

import java.net.ServerSocket;
import java.net.Socket;

// 服务器端,双向多次运行
public class TestServer {
public static void main(String[] args) {
try {
ServerSocket ss = new ServerSocket(7878);
while (true){
Socket socket = ss.accept(); // 监听
ServerThread st = new ServerThread(socket);
st.start();
}
}catch (Exception ex){
ex.printStackTrace();
}
}
}

客户端类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
package com.tipdm.demo6;

import java.io.*;
import java.net.Socket;

// 客户端
public class TestClient {
public static void main(String[] args) {
try {
Socket socket = new Socket("localhost", 7878);
ObjectOutputStream oo = new ObjectOutputStream(socket.getOutputStream());
Student student1 = new Student("张三", 18);
oo.writeObject(student1);
oo.flush();
socket.shutdownOutput();
BufferedReader br = new BufferedReader(new InputStreamReader(socket.getInputStream()));
String answer = br.readLine();
System.out.println("这里是客户端,服务器的相应信息是:"+answer);
br.close();
socket.close();
}catch (Exception e){
e.printStackTrace();
}
}
}

运行效果:

  • 运行服务器,开启主线程监听。

image-20230621223926040

  • 运行客户端发送请求。

image-20230621223953403

  • 回到服务器端,查看输出,可以看到输出结果,并继续监听。

image-20230621224011799

  • 再次运行客户端,再次查看服务器端结果。

image-20230621224059263

可以看到可以接收到多次客户端的请求,并且能够正常获取到对象中的信息。

-------------本文结束感谢您的阅读-------------